Sponsors Link

Komposisi Fungsi dan Invers Fungsi : Contoh dan Pembahasan

Sponsors Link

Komposisi fungsi dan invers merupakan materi yang akan dipelajari ketika menduduki kelas XI SMA. Pada kali ini kita akan belajar mengenai komposisi fungsi dan invers disertai soal dan pembahasan yang akan mempermudah dalam pemahaman materi ini. Untuk mempelajari materi ini Anda harus terlebih dahulu paham mengenai materi relasi dan fungsiSimak pembahasannya dibawah ini.

Sponsors Link

Pengertian fungsi

Fungsi adalah aturan yang menghubungan anggota himpunan A dengan anggota himpunan B. Suatu relasi dikatakan fungsi apabila setiap anggota himpunan A dipasangkan tepat satu anggota himpunan B. Jika f adalah suatu fungsi dari A ke B maka himpunan A disebut daerah asal (domain), himpunan B daerah kawan (kodomain), dan himpunan B yang berpasangan disebut hasil (range).

Jenis jenis Fungsi

1. Fungsi Linear

Fungsi linear adalah suatu fungsi yang memiliki 2 variabel atau lebih yang variabel bebasnya memiliki pangkat tertinggi nya satu.

Bentuk umum fungsi linear : f(x) = ax + b, a dan b konstan dengan a ≠ 0

2. Fungsi Konstan

Fungsi yang dinyatakan dengan rumus f(x) = c, dengan c merupakan konstanta

3. Fungsi Identitas

Fungsi identitas adalah fungsi dari A ke B jika dan hanya jika range f = kodomain atau f(A)=B

4. Fungsi Kuadrat

Fungsi kuadrat yaitu fungsi yang dinyatakan dengan rumus f(x) = ax2 + bx + c, di mana a ≠ 0 dan a, b, dan c bilangan konstan.

Komposisi Fungsi

Komposisi fungsiSebuah fungsi yang digabungkan ke dalam fungsi lain sehingga menghasilkan fungsi baru itu disebut komposisi fungsi.

(f ◦ g )(x) = f (g (x)) ; komposisi g ( fungsi komposisi dengan g dikerjakan lebih dahulu daripada f)

Suatu fungsi g digabungkan dengan fungsi f

(g ◦ f )(x) = g (f (x)) ; komposisi f ( fungsi komposisi dengan f dikerjakan lebih dahulu daripada g)

Suatu fungsi f digabungkan dengan fungsi g

Komposisi fungsi

Untuk mempermudah pemahaman mengenai menghitung komposisi fungsi, simak diagram disamping.

Sifat-sifat Komposisi Fungsi :

  • Tidak berlaku sifat komutatif
  • Bersifat asosiatif , (f ◦ ( g ◦ h ))(x) = (( f ◦ g )◦ h)(x)
  • Terdapat unsur identitas (I)(x) , (f ◦ I)(x) = (I ◦ f)(x) = f(x)

Sudah sangat jelas bukan dengan pembahasan serta gambar yang telas di jelaskan di atas sehingga akan mempermudah anda untuk lebih paham sampai dengan anda memahami dalam mengerjakannya seperti yang akan di bahas di bawah ini.

Sponsors Link

Invers Fungsi

Invers fungsi adalah fungsi yang membalikkan dari suatu fungsi.  Jika suatu f fungsi yang memetakan x ke y, maka invers dari f yaitu f 1 akan memetakan y ke x. Dengan kata lain bahwa daerah hasil dari f-1 (x) merupakan daerah asal bagi f(x) begitupun sebaliknya.

Invers Fungsi Komposisi

Invers fungsi komposisi yaitu invers dari gabungan dua buah fungsi ataupun lebih.

Jika h(x) = (g ◦ f) (x) maka invers fungsi komposisi nya h-1 = (g ◦ f)-1 (x) ; h-1 = (f-1 ◦ g-1) (x)

Soal dan Pembahasan

1. Diketahui sebuah fungsi f(x) = 2x + 1 dan g(x) = x+ 1 tentukan (g ◦ f) (x) dan (f ◦ g) (x)

Jawab :

(g ◦ f)(x) = g(f (x)) = g(2x +1) = (2x + 1)2 + 1 

(g ◦ f)(x) = 4x2 + 4x + 1

Sedangkan untuk mencari (f ◦ g)(x)

(f ◦ g)(x) = f(g (x)) = f( x+ 1 ) = 2 ( x+ 1 ) + 1 

(f ◦ g)(x) = 2x2 + 2 + 1 = 2x2 + 3

Sponsors Link

2. Diketahui sebuah fungsi f(x) = 2x + 4 dan g(x) = x2 – 1 tentukan (g ◦ f) (2) dan (f ◦ g) (2)

Jawab :

Hitung dahulu (g ◦ f) (x) dan (f ◦ g) (x)

(g ◦ f)(x) = g(f (x)) = g(2x + 4) = (2x + 4)2 – 1 

(g ◦ f)(x) = 4x2 + 16x + 16

Sedangkan untuk mencari (f ◦ g)(x)

(f ◦ g)(x) = f(g (x)) = f( x2 – 1 ) = 2 ( x+ 1 ) + 4 

(f ◦ g)(x) = 2x2 + 2 + 4 = 2x2 + 6

Maka (g ◦ f) (2) dan (f ◦ g) (2)

(g ◦ f)(2) = 4.22 + 16.2 + 16

(g ◦ f)(2) = 16 + 32 + 16 = 64

Sedangan (f ◦ g)(2)
(f ◦ g)(2) = 2.22 + 2 + 4 = 2.22 + 6
(f ◦ g)(2) = 8 + 6 = 14

3. Tentukan invers dari f(x) = 2x + 4

Jawab :

f(x) = 2x + 4
misalkan y =
2x + 4
maka 2x = y – 4 atau x = ½ y – 2
Maka inversnya yaitu f-1(y) =
½ y – 2 atau f-1(x) = ½ x – 2

Sekian pembahasan mengenai komposisi fungsi dan invers fungsi. Semoga dengan adanya artikel ini dapat membantu mempermudah dalam proses belajar mengenai komposisi fungsi dan invers fungsi.

Sponsors Link
, , , ,
Post Date: Tuesday 20th, June 2017 / 08:04 Oleh :
Kategori : Aljabar